Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 410
Filtrar
1.
BMC Cancer ; 24(1): 532, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671389

RESUMO

BACKGROUND: Aberrant expressions of desmoglein 2 (Dsg2) and desmocollin 2(Dsc2), the two most widely distributed desmosomal cadherins, have been found to play various roles in cancer in a context-dependent manner. Their specific roles on breast cancer (BC) and the potential mechanisms remain unclear. METHODS: The expressions of Dsg2 and Dsc2 in human BC tissues and cell lines were assessed by using bioinformatics analysis, immunohistochemistry and western blotting assays. Wound-healing and Transwell assays were performed to evaluate the cells' migration and invasion abilities. Plate colony-forming and MTT assays were used to examine the cells' capacity of proliferation. Mechanically, Dsg2 and Dsc2 knockdown-induced malignant behaviors were elucidated using western blotting assay as well as three inhibitors including MK2206 for AKT, PD98059 for ERK, and XAV-939 for ß-catenin. RESULTS: We found reduced expressions of Dsg2 and Dsc2 in human BC tissues and cell lines compared to normal counterparts. Furthermore, shRNA-mediated downregulation of Dsg2 and Dsc2 could significantly enhance cell proliferation, migration and invasion in triple-negative MDA-MB-231 and luminal MCF-7 BC cells. Mechanistically, EGFR activity was decreased but downstream AKT and ERK pathways were both activated maybe through other activated protein tyrosine kinases in shDsg2 and shDsc2 MDA-MB-231 cells since protein tyrosine kinases are key drivers of triple-negative BC survival. Additionally, AKT inhibitor treatment displayed much stronger capacity to abolish shDsg2 and shDsc2 induced progression compared to ERK inhibition, which was due to feedback activation of AKT pathway induced by ERK inhibition. In contrast, all of EGFR, AKT and ERK activities were attenuated, whereas ß-catenin was accumulated in shDsg2 and shDsc2 MCF-7 cells. These results indicate that EGFR-targeted therapy is not a good choice for BC patients with low Dsg2 or Dsc2 expression. Comparatively, AKT inhibitors may be more helpful to triple-negative BC patients with low Dsg2 or Dsc2 expression, while therapies targeting ß-catenin can be considered for luminal BC patients with low Dsg2 or Dsc2 expression. CONCLUSION: Our finding demonstrate that single knockdown of Dsg2 or Dsc2 could promote proliferation, motility and invasion in triple-negative MDA-MB-231 and luminal MCF-7 cells. Nevertheless, the underlying mechanisms were cellular context-specific and distinct.


Assuntos
Movimento Celular , Proliferação de Células , Desmocolinas , Desmogleína 2 , Neoplasias de Mama Triplo Negativas , Humanos , Desmocolinas/metabolismo , Desmocolinas/genética , Desmogleína 2/metabolismo , Desmogleína 2/genética , Feminino , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Invasividade Neoplásica , Regulação Neoplásica da Expressão Gênica , beta Catenina/metabolismo , Transdução de Sinais
2.
J Exp Clin Cancer Res ; 43(1): 31, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263178

RESUMO

BACKGROUND: Cadherin-17 (CDH17), a marker of differentiation in intestinal cells, binds and activates α2ß1 integrin to promote cell adhesion and proliferation in colorectal cancer (CRC) metastasis. Furthermore, CDH17 associates with p120- and ß-catenin in a manner yet to be fully elucidated. In this report, we explored the molecular mediators involved in this association, their contribution to CRC dissemination and potential therapeutic implications. METHODS: Proteomic and confocal analyses were employed to identify and validate CDH17 interactors. Functional characterization involved the study of proliferation, migration, and invasion in cell lines representative of various phenotypes. Immunohistochemistry was conducted on CRC tissue microarrays (TMA). In vivo animal experiments were carried out for metastatic studies. RESULTS: We found that desmocollin-1 (DSC1), a desmosomal cadherin, interacts with CDH17 via its extracellular domain. DSC1 depletion led to increased or decreased invasion in CRC cells displaying epithelial or mesenchymal phenotype, respectively, in a process mediated by the association with p120-catenin. Down-regulation of DSC1 resulted in an increased expression of p120-catenin isoform 1 in epithelial cells or a shift in cellular location in mesenchymal cells. Opposite results were observed after forced expression of CDH17. DSC1 is highly expressed in budding cells at the leading edge of the tumor and associates with poor prognosis in the stem-like, mesenchymal CRC subtypes, while correlates with a more favorable prognosis in the less-aggressive subtypes. In vivo experiments demonstrated that DSC1 silencing reduced tumor growth, liver homing, and metastasis in CRC mesenchymal cells. Furthermore, a synthetic peptide derived from CDH17, containing the NLV motif, effectively inhibited invasion and liver homing in vivo, opening up new possibilities for the development of novel therapies focused on desmosomal cadherins. CONCLUSIONS: These findings shed light on the multifaceted roles of CDH17, DSC1, and p120-catenin in CRC metastasis, offering insights into potential therapeutic interventions for targeting desmosomal cadherins in poorly-differentiated carcinomas.


Assuntos
Neoplasias Colorretais , Desmocolinas , Animais , delta Catenina , Proteômica , Caderinas
4.
Cell Mol Biol Lett ; 28(1): 68, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620794

RESUMO

BACKGROUND: Desmocollin-1 (DSC1) is a desmosomal transmembrane glycoprotein that maintains cell-to-cell adhesion. DSC1 was previously associated with lymph node metastasis of luminal A breast tumors and was found to increase migration and invasion of MCF7 cells in vitro. Therefore, we focused on DSC1 role in cellular and molecular mechanisms in luminal A breast cancer and its possible therapeutic modulation. METHODS: Western blotting was used to select potential inhibitor decreasing DSC1 protein level in MCF7 cell line. Using atomic force microscopy we evaluated effect of DSC1 overexpression and modulation on cell morphology. The LC-MS/MS analysis of total proteome on Orbitrap Lumos and RNA-Seq analysis of total transcriptome on Illumina NextSeq 500 were performed to study the molecular mechanisms associated with DSC1. Pull-down analysis with LC-MS/MS detection was carried out to uncover DSC1 protein interactome in MCF7 cells. RESULTS: Analysis of DSC1 protein levels in response to selected inhibitors displays significant DSC1 downregulation (p-value ≤ 0.01) in MCF7 cells treated with NF-κB inhibitor parthenolide. Analysis of mechanic cell properties in response to DSC1 overexpression and parthenolide treatment using atomic force microscopy reveals that DSC1 overexpression reduces height of MCF7 cells and conversely, parthenolide decreases cell stiffness of MCF7 cells overexpressing DSC1. The LC-MS/MS total proteome analysis in data-independent acquisition mode shows a strong connection between DSC1 overexpression and increased levels of proteins LACRT and IGFBP5, increased expression of IGFBP5 is confirmed by RNA-Seq. Pathway analysis of proteomics data uncovers enrichment of proliferative MCM_BIOCARTA pathway including CDK2 and MCM2-7 after DSC1 overexpression. Parthenolide decreases expression of LACRT, IGFBP5 and MCM_BIOCARTA pathway specifically in DSC1 overexpressing cells. Pull-down assay identifies DSC1 interactions with cadherin family proteins including DSG2, CDH1, CDH3 and tyrosine kinase receptors HER2 and HER3; parthenolide modulates DSC1-HER3 interaction. CONCLUSIONS: Our systems biology data indicate that DSC1 is connected to mechanisms of cell cycle regulation in luminal A breast cancer cells, and can be effectively modulated by parthenolide.


Assuntos
Desmocolinas , Neoplasias , Cromatografia Líquida , Desmocolinas/metabolismo , Proteoma , Espectrometria de Massas em Tandem , Humanos , Células MCF-7 , Sesquiterpenos/farmacologia
5.
Aging (Albany NY) ; 15(13): 6380-6399, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421607

RESUMO

BACKGROUND: Globally, gastric cancer (GC) is still a major leading cause of cancer-associated deaths. Downregulated desmocollin2 (DSC2) is considered to be closely related to tumor progression. However, the underlying mechanisms of DSC2 in GC progression require further exploration. METHOD: We initially constructed different GC cells based on DSC2 contents, established the mouse tumor xenografts, and subsequently performed clonal formation, MTT, Caspase-3 activity, and sperm DNA fragmentation assays to detect the functions of DSC2 in GC growth. Subsequently, we performed western blot, Co-IP, and immunofluorescence assays to investigate the underlying mechanisms through pretreatment with PI3K inhibitor, LY294002, and its activator, recombinant human insulin-like growth factor I (IGF1). RESULT: DSC2 could significantly inhibit the viability of GC cells at both in vitro and in vivo levels. The underlying mechanism may be that DSC2 binds the γ-catenin to decrease its nuclear level, thereby downregulating the anti-apoptotic factor BCL-2 expression and upregulating the pro-apoptotic factor P53 expression, which adjusts the PTEN/PI3K/AKT signaling pathway to promote the cancer cell apoptosis. CONCLUSIONS: Our finding suggests that DSC2 might be a potential therapeutic target for the treatment of cancers, most especially GC.


Assuntos
Desmocolinas , Transdução de Sinais , Neoplasias Gástricas , Animais , Humanos , Camundongos , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Desmocolinas/uso terapêutico , gama Catenina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias Gástricas/genética
6.
Sci Rep ; 13(1): 7330, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147394

RESUMO

Despite evidence demonstrating persistent lung function deficits in preterm-born children, especially in those who had bronchopulmonary dysplasia (BPD) in infancy, the underlying biological mechanisms explaining these lung function deficits remain poorly understood. We characterised the exhaled breath condensate (EBC) proteome in preterm-born children, with and without BPD; and before and after inhaler treatment. EBC from children aged 7-12 years, from the Respiratory Health Outcomes in Neonates (RHiNO) study, were analysed by Nano-LC Mass Spectrometry with Tandem Mass Tag labelling. Children with percent predicted forced expiratory volume in 1 second ≤ 85% were enrolled to a 12-week blinded randomised trial of inhaled corticosteroids alone (ICS) or with long-acting ß2-agonist (ICS/LABA) or placebo. EBC was analysed from 218 children at baseline, and 46 children received randomised inhaled therapy. 210 proteins were detected in total. For the 19 proteins present in every sample, the desmosome proteins: desmoglein-1, desmocollin-1 and plakoglobin were significantly decreased, and cytokeratin-6A was increased in preterm-born children with BPD when compared to preterm- and term-born controls. ICS/LABA treatment significantly increased abundance of desmoglein-1, desmocollin-1 and plakoglobin in the BPD group with low lung function, and significantly increased plakoglobin in those without BPD. No differences were noted after ICS treatment. Exploratory analyses of proteins not detected in all samples suggested decreased abundance of several antiproteases. This study provides proteomic evidence of ongoing pulmonary structural changes with decreased desmosomes in school-aged preterm-born children with BPD and low lung function, which was reversed with combined inhaled corticosteroids and long-acting ß2-agonists therapy.


Assuntos
Displasia Broncopulmonar , Recém-Nascido , Humanos , Criança , Displasia Broncopulmonar/tratamento farmacológico , Desmossomos , Desmocolinas , Proteômica , gama Catenina , Pulmão , Corticosteroides/uso terapêutico , Nebulizadores e Vaporizadores , Desmogleínas
7.
Front Immunol ; 14: 1070679, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817446

RESUMO

Introduction: In recent years, numerous studies have confirmed that chronic stress is closely related to the development of cancer. Our previous research showed that high levels of stress hormones secreted in the body during chronic stress could inhibit the cancer-killing activity of granulocytes, which could further promote the development of cancer. Therefore, reversing the immunosuppressive effect of stress hormones on granulocytes is an urgent problem in clinical cancer treatment. Here, we selected noradrenaline (NA) as a representative stress hormone. Methods and results: After screening many traditional Chinese herbal medicine active ingredients, a promising compound, ginsenoside Rg1, attracted our attention. We verified the immunoprotective effect of ginsenoside Rg1 on granulocytes in vitro and ex vivo, and attempted to understand its potential immunoprotective mechanism. We confirmed the immunoprotective effect of ginsenoside Rg1 on granulocytes using cell and animal experiments. Cell counting kit-8 (CCK-8) and ex vivo experiments were performed to investigate the immunoprotective effects of ginsenoside Rg1 on the anti-cancer function of granulocytes inhibited by NA. Transcriptome sequencing analysis and qRT-PCR showed that NA elevated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN in granulocytes, thereby reducing the anti-cancer function of granulocytes. In contrast, ginsenoside Rg1 downregulated the mRNA expression of ARG2, MMP1, S100A4, and RAPSN, and upregulated the mRNA expression of LAMC2, DSC2, KRT6A, and FOSB, thereby enhancing the anti-cancer function of granulocytes inhibited by NA. Transwell cell migration experiments were performed to verify that ginsenoside Rg1 significantly enhanced the migration capability of granulocytes inhibited by NA. Tumor-bearing model mice were used to verify the significant immunoprotective effects in vivo. Finally, CCK-8 and hematoxylin and eosin staining experiments indicated that ginsenoside Rg1 exhibited high biosafety in vitro and in vivo. Discussion: In future clinical treatments, ginsenoside Rg1 may be used as an adjuvant agent for cancer treatment to alleviate chronic stress-induced adverse events in cancer patients.


Assuntos
Ginsenosídeos , Neoplasias , Camundongos , Animais , Metaloproteinase 1 da Matriz , Norepinefrina , Ginsenosídeos/farmacologia , Adjuvantes Imunológicos , Granulócitos/metabolismo , Neoplasias/tratamento farmacológico , RNA Mensageiro , Desmocolinas
8.
J Dermatol ; 50(2): 132-139, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36578135

RESUMO

The major autoantigens for pemphigus are desmogleins (Dsgs), cell-cell adhesive structure proteins, one of the desmosomal cadherins. Recent progress in molecular biology has revealed that IgG autoantibodies of classical pemphigus react with Dsg1 or Dsg3. Desmocollins (Dscs) also belong to the cadherin supergene family that provides structure to the desmosomes and play an important role in cell-to-cell adhesion. In addition to the presence of four desmosomal Dsg isoforms, i.e. Dsg1-4, Dsc1, 2 and 3, all of which are derived from different genes, Dsc1 has been previously identified as the target antigen of IgA autoantibodies in the subcorneal pustular dermatosis (SPD)-type of intercellular IgA dermatosis. In addition to the IgA anti-Dsc1 autoantiboides, the presence of IgG anti-Dsc autoantibodies is described in patients of some autoimmune bullous diseases. In particular, the current pemphigus detecting autoantibodies to Dscs has shown a tendency in atypical variants of pemphigus. Therefore, autoantibodies against Dscs alone may cause detachment of cell-cell adhesion in the epidermis in some pemphigus. However, except for the findings of a few in vitro and in vivo studies, there is currently no clear evidence for the pathogenicity of anti-Dsc autoantibodies in pemphigus, whereas significance of anti-Dsg autoantibodies is well established. This article describes the structure and function of the Dscs, and explores the evidence regarding the pathogenic role of anti-Dsc autoantibodies in pemphigus.


Assuntos
Pênfigo , Dermatopatias Vesiculobolhosas , Humanos , Pênfigo/patologia , Autoanticorpos , Desmocolinas , Desmogleína 1 , Desmogleína 3 , Imunoglobulina A , Imunoglobulina G
9.
Acta Dermatovenerol Croat ; 31(4): 178-183, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38651843

RESUMO

BACKGROUND: Pemphigus diseases are a subgroup of autoimmune bullous diseases characterized by autoantibodies against desmogleins and occasionally desmocollins. Desmocollin 3 is the main desmocollin isoform that contributes to cell adhesion in the epidermis. OBJECTIVE: To evaluate the presence and level of anti-desmocollin 3 antibodies in pemphigus diseases, and to investigate whether their presence is associated with a specific type, presentation, or clinical pattern. METHODS: Forty patients with pemphigus diseases and forty healthy controls were enrolled. Medical history, clinical examination, and pemphigus disease area index (PDAI) scoring were recorded for all patients. Serum samples were collected from both groups for assessment of anti-desmocollin 3 antibody reactivity by ELISA. RESULTS: The presence of anti-desmocollin 3 antibodies was significant among patients with pemphigus compared with controls (P=0.003). The level of anti-desmocollin 3 antibodies was also significantly higher in patients with pemphigus compared with controls (P=0.01). There was no significant relationship between the presence of anti-desmocollin 3 antibodies and any of the clinical presentations of pemphigus (type, severity, duration, activity, presence of annular pattern, or site of affection - mucosal, cutaneous, on the scalp, palmoplantar, or flexural). CONCLUSION: Anti-desmocollin 3 antibodies are upregulated in pemphigus diseases and can contribute to the pathogenesis of pemphigus. No specific clinical type, presentation, or pattern was found to be associated with the presence of anti-desmocollin 3 antibodies.


Assuntos
Autoanticorpos , Desmocolinas , Pênfigo , Regulação para Cima , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autoanticorpos/sangue , Autoanticorpos/imunologia , Estudos de Casos e Controles , Desmocolinas/imunologia , Ensaio de Imunoadsorção Enzimática , Pênfigo/imunologia
10.
Aging (Albany NY) ; 14(21): 8805-8817, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36367775

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common cancers around the world with a poor prognosis. The main reason for poor prognosis is early stage HCC is inconspicuous so it is difficult to detect and effective treatment strategies are lacking for advanced HCC. In this context, novel molecular targets are urgently needed for the diagnosis and therapy of HCC. In this study, we investigated the expression level, biological function, and relative mechanism of Desmocollin-2(DSC2) in HCC. DSC2 expression levels were decreased significantly in HCC cell lines SMMC-7721(7721), Huh7, HCC-LM3(LM3), and MHCC-97H(97H), especially in LM3 cells, compared with human liver cell line L02(L02). DSC2 overexpression in LM3 cells could inhibit the proliferation (in vitro and in vivo), colony formation, migration, and invasion abilities of HCC cells, and promote cell apoptosis, while DSC2 inhibition in 7721 cells performed the opposite effect. Consistent with these results, regulating DSC2 expression in 7721 and LM3 cells could affect the expression levels of apoptosis-related proteins (Bax, Bcl-2, c-Caspase-3, Caspase-3, Caspase-8, and Survivin) and cell cycle-related proteins (Cyclin D1, Cyclin B1, CDK1, and CDK2). Furthermore, DSC2 expression was significantly negatively correlated with the levels of p-ERK and c-MYC in both LM3 and 7721 cell lines. These findings confirmed that DSC2 overexpression could inhibit the proliferation, migration, and invasion abilities while promoting apoptosis of HCC cells via the ERK/c-MYC signaling pathway. In a conclusion, DSC2 was a tumor suppressor with low expression in liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Transdução de Sinais , Caspase 3 , Desmocolinas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Neoplasias Hepáticas/genética , Proliferação de Células , Apoptose
11.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293530

RESUMO

Cancer develops in a multi-step process where environmental carcinogenic exposure is a primary etiological component, and where cell-cell communication governs the biological activities of tissues. Identifying the molecular genes that regulate this process is essential to targeting metastatic breast cancer. Ionizing radiation can modify and damage DNA, RNA, and cell membrane components such as lipids and proteins by direct ionization. Comparing differential gene expression can help to determine the effect of radiation and estrogens on cell adhesion. An in vitro experimental breast cancer model was developed by exposure of the immortalized human breast epithelial cell line MCF-10F to low doses of high linear energy transfer α particle radiation and subsequent growth in the presence of 17ß-estradiol. The MCF-10F cell line was analyzed in different stages of transformation that showed gradual phenotypic changes including altered morphology, increase in cell proliferation relative to the control, anchorage-independent growth, and invasive capability before becoming tumorigenic in nude mice. This model was used to determine genes associated with cell adhesion and communication such as E-cadherin, the desmocollin 3, the gap junction protein alpha 1, the Integrin alpha 6, the Integrin beta 6, the Keratin 14, Keratin 16, Keratin 17, Keratin 6B, and the laminin beta 3. Results indicated that most genes had greater expression in the tumorigenic cell line Tumor2 derived from the athymic animal than the Alpha3, a non-tumorigenic cell line exposed only to radiation, indicating that altered expression levels of adhesion molecules depended on estrogen. There is a significant need for experimental model systems that facilitate the study of cell plasticity to assess the importance of estrogens in modulating the biology of cancer cells.


Assuntos
Neoplasias da Mama , Camundongos , Animais , Humanos , Feminino , Neoplasias da Mama/metabolismo , Queratina-14 , Queratina-16 , Transformação Celular Neoplásica/genética , Camundongos Nus , Desmocolinas , Queratina-17 , Queratina-6 , Laminina , Estrogênios/farmacologia , Radiação Ionizante , Moléculas de Adesão Celular , Estradiol/farmacologia , Caderinas/genética , RNA , Conexinas , Lipídeos , DNA , Adesão Celular
12.
Oxid Med Cell Longev ; 2022: 4813571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36120591

RESUMO

Downregulated DSC2 involved in the metastasis of cancers. Unfortunately, its role on the development of gastric cancer (GC) and the potential mechanisms remain unclear. Bioinformatics analysis, Western blot, qRT-PCR, and immunohistochemistry were performed to detect the DSC2 levels of human GC and normal stomach tissues. The role of DSC2 and the downstream signaling in gastric carcinogenesis were explored by using GC specimens, GC cells with different DSC2 expression, inhibitors, and mouse metastasis models. We found that the level of DSC2 decreased significantly in GC tissues and cells. Recovered DSC2 inhibited the invasion and migration of GC cells both in culture and in xenografts. Mechanistically, DSC2 could not only decrease Snail level and nuclear BRD4 level by forming DSC2/BRD4, but also inhibit nuclear translocation of ß-catenin. We concluded that DSC2 inhibited the metastasis of GC, and the underlying mechanisms were closely related to the regulation on nuclear translocation of BRD4 and ß-catenin. Our results suggest that DSC2 may serve as a novel therapeutic target for GC.


Assuntos
Neoplasias Gástricas , beta Catenina , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Desmocolinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transdução de Sinais , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo
15.
Int J Mol Sci ; 23(2)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35054841

RESUMO

Arrhythmogenic cardiomyopathy is a heritable heart disease associated with desmosomal mutations, especially premature termination codon (PTC) variants. It is known that PTC triggers the nonsense-mediated decay (NMD) mechanism. It is also accepted that PTC in the last exon escapes NMD; however, the mechanisms involving NMD escaping in 5'-PTC, such as reinitiation of translation, are less known. The main objective of the present study is to evaluate the likelihood that desmosomal genes carrying 5'-PTC will trigger reinitiation. HL1 cell lines were edited by CRISPR/Cas9 to generate isogenic clones carrying 5'-PTC for each of the five desmosomal genes. The genomic context of the ATG in-frame in the 5' region of desmosomal genes was evaluated by in silico predictions. The expression levels of the edited genes were assessed by Western blot and real-time PCR. Our results indicate that the 5'-PTC in PKP2, DSG2 and DSC2 acts as a null allele with no expression, whereas in the DSP and JUP gene, N-truncated protein is expressed. In concordance with this, the genomic context of the 5'-region of DSP and JUP presents an ATG in-frame with an optimal context for the reinitiation of translation. Thus, 5'-PTC triggers NMD in the PKP2, DSG2* and DSC2 genes, whereas it may escape NMD through the reinitiation of the translation in DSP and JUP genes, with no major effects on ACM-related gene expression.


Assuntos
Desmoplaquinas/genética , Desmoplaquinas/metabolismo , gama Catenina/genética , gama Catenina/metabolismo , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Códon sem Sentido , Desmocolinas/genética , Desmogleína 2/genética , Mutação da Fase de Leitura , Camundongos , Degradação do RNAm Mediada por Códon sem Sentido , Placofilinas/genética , Biossíntese de Proteínas
16.
Annu Rev Pathol ; 17: 47-72, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34425055

RESUMO

Desmosomal cadherins are a recent evolutionary innovation that make up the adhesive core of highly specialized intercellular junctions called desmosomes. Desmosomal cadherins, which are grouped into desmogleins and desmocollins, are related to the classical cadherins, but their cytoplasmic domains are tailored for anchoring intermediate filaments instead of actin to sites of cell-cell adhesion. The resulting junctions are critical for resisting mechanical stress in tissues such as the skin and heart. Desmosomal cadherins also act as signaling hubs that promote differentiation and facilitate morphogenesis, creating more complex and effective tissue barriers in vertebrate tissues. Interference with desmosomal cadherin adhesive and supra-adhesive functions leads to a variety of autoimmune, hereditary, toxin-mediated, and malignant diseases. We review our current understanding of how desmosomal cadherins contribute to human health and disease, highlight gaps in our knowledge about their regulation and function, and introduce promising new directions toward combatting desmosome-related diseases.


Assuntos
Desmocolinas , Desmossomos , Caderinas/fisiologia , Adesão Celular/fisiologia , Desmossomos/fisiologia , Humanos , Transdução de Sinais
17.
J Allergy Clin Immunol ; 149(3): 1105-1112.e9, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34454985

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a common chronic inflammatory skin disease with high heritability. Previous genome-wide association studies have identified several loci predisposing to AD. These findings explain approximately 30% of the variance in AD susceptibility, suggesting that further work is required to fully understand the genetic underpinnings. OBJECTIVE: We sought to gain additional understanding of the genetic contribution to AD risk by using biobank resources. METHODS: We completed a genome-wide meta-analysis of AD in 796,661 individuals (Ncases = 22,474) from the FinnGen study, the Estonian Biobank, and the UK Biobank. We further performed downstream in silico analyses to characterize the risk variants at the novel loci. RESULTS: We report 30 loci associating with AD (P < 5 × 10-8), 5 of which are novel. In 2 of the novel loci, we identified missense mutations with deleterious predictions in desmocollin 1 and serpin family B member 7, genes encoding proteins crucial to epidermal strength and integrity. CONCLUSIONS: These findings elucidate novel genetic pathways involved in AD pathophysiology. The likely involvement of desmocollin 1 and serpin family B member 7 in AD pathogenesis may offer opportunities for the development of novel treatment strategies for AD in the future.


Assuntos
Dermatite Atópica , Desmocolinas , Serpinas , Bancos de Espécimes Biológicos , Dermatite Atópica/genética , Desmocolinas/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Serpinas/genética
18.
J Invest Dermatol ; 142(3 Pt B): 915-923.e3, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34265330

RESUMO

Pemphigus is a potentially lethal autoimmune bullous skin disorder, which is associated with IgG autoantibodies against desmoglein (DSG) 3 and DSG1. Notably, a subset of patients with pemphigus presents with a similar clinical phenotype in the absence of anti-DSG IgG, suggesting the presence of serum IgG reactive with desmosomal components other than DSG1 or DSG3. We and others have previously shown that such patients have serum IgG autoantibodies against desmocollin 3 (DSC3), a component of desmosomes, which induce loss of keratinocyte adhesion ex vivo. Moreover, DSC3 hypomorphic mice show a severe blistering phenotype of the mucous membrane, which is highly characteristic of pemphigus. These findings prompted us to study the induction and regulation of anti-human DSC3 IgG in humanized mice transgenic for HLA-DRB1∗04:02, which is a highly prevalent haplotype in pemphigus. We show that IgG from sera of immunized mice induces acantholysis in a dispase-based keratinocyte dissociation assay through the activation of p38 MAPKs and EGFR. Passive IgG transfer from mice immunized with recombinant human DSC3 into neonates did not induce intraepidermal loss of adhesion presumably owing to the lack of homology between human and mouse DSC3. Ex vivo stimulation of splenocytes from DSC3-immunized mice with human DSC3 leads to a significant proliferative IFN-γ and IL-4 T-cell response, which is restricted by HLA-DR/HLA-DQ. These findings suggest that the induction of pathogenic anti-DSC3 IgG is associated with DSC3-specific T cells that recognize DSC3 in association with HLA-DRB1∗04:02.


Assuntos
Pênfigo , Animais , Autoanticorpos , Desmocolinas , Desmogleína 1 , Desmogleína 3/genética , Modelos Animais de Doenças , Cadeias HLA-DRB1/genética , Humanos , Imunoglobulina G , Camundongos , Camundongos Transgênicos
19.
Cancer Gene Ther ; 29(3-4): 304-325, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33723406

RESUMO

Triple-negative breast cancer (TNBCs) display lung metastasis tropism. However, the mechanisms underlying this organ-specific pattern remains to be elucidated. We sought to evaluate the utility of blocking extravasation to prevent lung metastasis. To identify potential geminin overexpression-controlled genetic drivers that promote TNBC tumor homing to lungs, we used the differential/suppression subtractive chain (D/SSC) technique. A geminin overexpression-induced lung metastasis gene signature consists of 24 genes was discovered. We validated overexpression of five of these genes (LGR5, HAS2, CDH11, NCAM2, and DSC2) in worsening lung metastasis-free survival in TNBC patients. Our data demonstrate that LGR5-induced ß-catenin signaling and stemness in TNBC cells are geminin-overexpression dependent. They also demonstrate for the first-time expression of RSPO2 in mouse lung tissue only and exacerbation of its secretion in the circulation of mice that develop geminin overexpressing/LGR5+-TNBC lung metastasis. We identified a novel extravasation receptor complex, consists of CDH11, CD44v6, c-Met, and AXL on geminin overexpressing/LGR5+-TNBC lung metastatic precursors, inhibition of any of its receptors prevented geminin overexpressing/LGR5+-TNBC lung metastasis. Overall, we propose that geminin overexpression in normal mammary epithelial (HME) cells promotes the generation of TNBC metastatic precursors that home specifically to lungs by upregulating LGR5 expression and promoting stemness, intravasation, and extravasation in these precursors. Circulating levels of RSPO2 and OPN can be diagnostic biomarkers to improve risk stratification of metastatic TNBC to lungs, as well as identifying patients who may benefit from therapy targeting geminin alone or in combination with any member of the newly discovered extravasation receptor complex to minimize TNBC lung metastasis.


Assuntos
Neoplasias Pulmonares , Neoplasias de Mama Triplo Negativas , Animais , Mama/metabolismo , Mama/patologia , Linhagem Celular Tumoral , Desmocolinas , Geminina/metabolismo , Humanos , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Camundongos , Moléculas de Adesão de Célula Nervosa , Neoplasias de Mama Triplo Negativas/metabolismo
20.
Orphanet J Rare Dis ; 16(1): 496, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819141

RESUMO

BACKGROUND: The left ventricular noncompaction cardiomyopathy (LVNC) is a rare subtype of cardiomyopathy associated with a high risk of heart failure (HF), thromboembolism, arrhythmia, and sudden cardiac death. METHODS: The proband with overlap phenotypes of LVNC and hypertrophic cardiomyopathy (HCM) complicates atrial fibrillation (AF), ventricular tachycardia (VT), and HF due to the diffuse myocardial lesion, which were diagnosed by electrocardiogram, echocardiogram and cardiac magnetic resonance imaging. Peripheral blood was collected from the proband and his relatives. DNA was extracted from the peripheral blood of proband for high-throughput target capture sequencing. The Sanger sequence verified the variants. The protein was extracted from the skin of the proband and healthy volunteer. The expression difference of desmocollin2 was detected by Western blot. RESULTS: The novel heterozygous truncated mutation (p.K47Rfs*2) of the DSC2 gene encoding an important component of desmosomes was detected by targeted capture sequencing. The western blots showed that the expressing level of functional desmocollin2 protein (~ 94kd) was lower in the proband than that in the healthy volunteer, indicating that DSC2 p.K47Rfs*2 obviously reduced the functional desmocollin2 protein expression in the proband. CONCLUSION: The heterozygous DSC2 p.K47Rfs*2 remarkably and abnormally reduced the functional desmocollin2 expression, which may potentially induce the overlap phenotypes of LVNC and HCM, complicating AF, VT, and HF.


Assuntos
Cardiomiopatia Hipertrófica , Insuficiência Cardíaca , Arritmias Cardíacas , Cardiomiopatia Hipertrófica/genética , Desmocolinas/genética , Insuficiência Cardíaca/genética , Humanos , Mutação/genética , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...